順列   関連問題


【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。

1から自然数をnまで順にかけあわせたものをn階乗と言い、と表す。
順序をつけて
1列に並べたものを順列と言う。異なるn個のものからr個を選んで1列に並べる順列の総数をと表す。
公式:

,・・・,です。
特別に、と定めます。

白、赤、緑、黄、青の
5色に塗り分けられたボールから3個を選んで1列に並べる方法は、最初の1個の選び方が5通り、仮に白を選んだとして、2個めの選び方は残り4個から選ぶので4通り、3個めの選び方は残り3個から選ぶので3通りで、
通りになります。


n個の異なるボールからr個を選んで1列に並べる方法は、同様に考えて、最初の1個がn通り、2個目が残りの通り、・・・、r個目が通りで、
通りです。
これは、また、階乗の記号を使って、と書けます。
は、
nから始まって1ずつ減りながらまで連続r個の整数の積です。

5個の異なるものから3個を選んで1列に並べるときには、順列の公式より、通りとなります。

n個の異なるものからn個全部を選んで1列に並べる方法の数は、通りです。

必ずしも並べるような場合でなくても、順列の考え方が使えます。
例えば、
8人の人で委員会を構成するときに、委員長と書記と会計の3人の役員の割り当て方は何通りあるか、という問題は、異なる8つのものから3個のものを選んで1列に並べるのと同等に考えることができて、通りです。
また、
8脚の異なる椅子があって、そこにA君、B君、C君の3人が座るとき、座り方が何通りあるか、という問題も、やはり、通りです。


【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。

  数学基礎事項TOP  数学TOP  TOPページに戻る

【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。

各問題の著作権は
出題大学に属します。

©2005-2024
(有)りるらる
苦学楽学塾 随時入会受付中!
理系大学受験ネット塾苦学楽学塾
(ご案内はこちら)ご入会は、
まず、こちらまでメール
お送りください。