3次関数の増減(2)
【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。
3次関数の増減の続きです。
3次関数: (a,b,c,dは実数の定数で、)を考えます。
ですが、は2次方程式: ・・・@ となります(2次方程式の一般論を参照)。
@の判別式をとして、以下のように場合分けすることができます。
(i) のとき、2次方程式:は2個の実数解をもちます。これを、α,β ()とすれば、右図のようには、
のとき、極大値:,極小値:をとります。
のとき、極大値:,極小値:をとります。
(ii) のとき、2次方程式:は実数の重解を持ちます。これをαとすれば、となり、右図のように、
のとき、で、は単調増加(を与えるxがただ1つだけの場合にも、の場合と同様に単調増加と言います)であり、は極値をもちません。
のとき、で、は単調減少であり、は極値をもちません。
(iii) のとき、2次方程式:は実数解をもちません。右図のように、
のとき、で、は単調増加であり、は極値をもちません。
のとき、で、は単調減少であり、は極値をもちません。
【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。
数学基礎事項TOP 数学TOP TOPページに戻る
【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。
各問題の著作権は
出題大学に属します。©2005-2024(有)りるらる 苦学楽学塾 随時入会受付中!理系大学受験ネット塾苦学楽学塾(ご案内はこちら)ご入会は、
まず、こちらまでメールを
お送りください。