千葉大数学'10年[11]
は実数全体で定義された関数とする。実数aに関する条件(P)を考える。
(P) 正の実数rを十分小さく選べば、をみたすすべての実数xに対してが成り立つ。 このとき、以下の問いに答えよ。
(1) 実数aが条件(P)をみたし、かつ、がで微分可能ならば、であることを証明せよ。 (2) 関数が で定義されているとき、条件(P)をみたすような実数a全体の集合を決定せよ。
(3) 一般に、実数全体で定義された関数に対し、次の命題は正しいか。正しければ証明し、正しくなければ反例を挙げよ。 (命題) すべての実数aが条件(P)をみたすならば、は定数関数である。
【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。
解答 本格的な数学の香りが漂う問題ですが、見慣れない問題なので、どうやって答案を書くか悩むかも知れません。なお、証明の技巧を参照してください。
以下で、
⇔ です。
(1) において、です。 です。
ここで、を、との2つの部分に分けて考えます。 ∴ ・・・B @,A,Bより、
(証明終)
より、 これらより、 のグラフは右図のようになります。これより、以下のようにaの範囲を分けて考えます。 (i) のとき、においては減少関数なので、どんな小さな正数rに対しても、を満たすxのうち、例えばについて、となり、条件(P)は成立しません。 を満たすすべての実数xに対して、で、条件(P)が成立します。 (b) のとき、となるようにrをとれば、,より、を満たすすべての実数xに対して、で、条件(P)が成立します。 (iii) のとき、なので、を満たすrをとれば、,より、を満たすすべての実数xに対して、 (右図を参照)で、条件(P)が成立します。 (iv) のとき、においては減少関数なので、どんな小さな正数r ()に対しても、を満たすxのうち、例えばについて、となるので、条件(P)は成立しません。 (v) のとき、においては増加関数なので、どんな小さな正数r ()に対しても、を満たすxのうち、例えばについて、となるので、条件(P)は成立しません。 (vi) のとき、においてなので、となるようにrをとれば、,より、を満たすすべての実数xに対して、で、条件(P)が成立します。 (vii) のとき、においては減少関数なので、どんな小さな正数r ()に対しても、を満たすxのうち、例えばについて、となるので、条件(P)は成立しません。 (viii) のとき、においては増加関数なので、どんな小さな正数rに対しても、を満たすxのうち、例えばについて、となるので、条件(P)は成立しません。 以上より、条件(P)を満たすような実数a全体の集合は、
......[答]
(3) 定数関数であれば条件(P)を満たすこと、また、連続かつ増加である範囲、連続かつ減少である範囲をもつ関数では条件(P)が満たされないことは明らかです。
(2)の(iii)の場合でも条件(P)が成立することを考えると、関数に不連続点があって、その不連続点を含む適当な範囲内で、その不連続点において最大となっていて、不連続点以外では定数値をとる関数であれば、条件(P)が成立します。
従って、xが整数値のとき,xが整数値でないときとなるような関数では、定数関数ではないのに、すべての実数aが条件(P)を満たします。
命題は正しくない。反例は、xが整数値のとき,xが整数値でないときとなるような関数 ......[答] 注.上記の反例で、整数よりも、ほんのちょっとだけ小さい実数a、あるいは、ほんのちょっとだけ大きい実数aのとき、条件(P)は成り立たないのではないか、と、感じる人がいるかも知れません。
ですが、整数をnとして、となるようなaを、どんなにnの近くとっても、rをとなるようにとれば(とします)、なので、を満たすすべての実数xに対してとなり条件(P)が成立します。
また、となるようなaを、どんなにnの近くにとっても、rをとなるようにとれば(とします)、なので、を満たすすべての実数xに対してとなり条件(P)が成立します。
ある実数aのどんなに近くにaと異なる実数bをとっても,または、を満たす実数cがとれる、という実数の性質を、実数の稠密性と言います。
【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。
数学TOP TOPページに戻る
【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。
各問題の著作権は
出題大学に属します。©2005-2024(有)りるらる 苦学楽学塾 随時入会受付中!理系大学受験ネット塾苦学楽学塾(ご案内はこちら)ご入会は、
まず、こちらまでメールを
お送りください。