京大理系数学'24年前期[6]
自然数kに対して、とする。nを自然数とし、の整数部分がn桁であるようなkの個数をとする。また、の整数部分がn桁であり、その最高位の数字が1であるようなkの個数をとする。次を求めよ。
ただし、例えば実数2345.678の整数部分2345は4桁で、最高位の数字は2である。
【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。
解答 3.9以上5.1未満(5.1−3.9 = 1.2)の整数は、4と5の2個です。
a,bを実数()として、a以上b未満の整数の個数Mについて、です(以下の@とA)。
整数部分の桁数や、最高位の数字は常用対数を用いて考えます。
3桁の整数mは、100以上1000未満なので、,つまり、,常用対数を用いて書くと、,つまり、です。
3桁の整数で最高位が1の整数mは、100以上200未満なので、,つまり、,常用対数を用いて書くと、,つまり、です。
a,b,c,dを正数として、,のとき、です(以下のB)。
の整数部分がn桁 ⇔ ⇔ (対数関数を参照) ⇔ ⇔
これを満たす自然数kの個数は、
・・・@ の整数部分がn桁でその最高位が1 ⇔ ⇔ ⇔ ⇔
これを満たす自然数kの個数は、
・・・A @,Aより、
・・・B B左辺は、とすると(数列の極限を参照)、
B右辺は、とすると、
はさみうちの原理より、 ......[答]
注.上記ではがしつこく出てきます。試験会場では時間節約のため、と文字において答案を書くようにしましょう。
【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。
京大理系数学TOP 数学TOP TOPページに戻る
【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。
各問題の著作権は
出題大学に属します。©2005-2024(有)りるらる 苦学楽学塾 随時入会受付中!理系大学受験ネット塾苦学楽学塾(ご案内はこちら)ご入会は、
まず、こちらまでメールを
お送りください。