慶大理工数学'06[B1]

整数pqrαβ に対し、次のようなxyについての連立1次方程式を考える。
以下では、とする。
(1) xypqrαβ を用いて表しなさい。解答欄には答だけを書きなさい。
(2) 整数pqrに関する条件は、任意の整数αβ に対し解xyが整数であるための必要十分条件であることを証明しなさい。
(3) のとき、に対する解のxの値が2となるような整数の組をすべて求めなさい。


【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。

解答 整数行列の融合問題です。

(1) 行列を用いて、連立方程式を記述すると、
 ・・・@
より、が存在して(逆行列を参照)、@の両辺に左からかける(行列の積を参照)と、

......[]

(2) (1)の結果より、整数pqr,つまり、を満たすとき、任意の整数αβ に対し、解xy,即ち、
または、
はいずれも整数になります。

逆に、任意の整数
αβ に対し解xyが整数であるとき、(1)の結果より、
 ・・・A
 ・・・B

Aより、prの最大公約数をd,また、を整数として、とおくと(このとき、dの倍数)
であれば、は整数になりますが、 (または)であってもよいことになります。である必要はありません。

しかし、Bでは、
αβ が任意の整数をとるとき、は任意の整数をとり得ます。
任意の整数をとりうるということは、となることもあり得るということです
(例えば、のとき)
このとき、を満たす
yが整数となるためには、
このとき、も整数です。
従って、任意の整数
αβ に対し解xyが整数であるとき、

以上より、整数
pqrに関する条件は、任意の整数αβ に対し解xyが整数であるための必要十分条件です。

(3) のとき、

のとき、
D−C×qより、
Cより、

p
qは整数だから、 または
前者のとき、,後者のとき、

のとき、
q−Dより、
Cより、

p
qは整数だから、 または
前者のとき、,後者のとき、

......[]


【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。

  慶大理工数学TOP  数学TOP  TOPページに戻る

【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。

各問題の著作権は
出題大学に属します。

©2005-2024
(有)りるらる
苦学楽学塾 随時入会受付中!
理系大学受験ネット塾苦学楽学塾
(ご案内はこちら)ご入会は、
まず、こちらまでメール
お送りください。