東大理系数学'24年前期[5]

座標空間内に3ABCをとり、Dを線分ACの中点とする。三角形ABDの周および内部をx軸のまわりに1回転させて得られる立体の体積を求めよ。


【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。

解答 東大にしては簡単な問題だなあ、と思っていると思わぬ陥穽が待っています。

ABの中点Dは、 (ベクトルの内分・外分を参照)
三角形ABDの辺となるベクトルを求めると、


三角形ABDの辺上の点の位置ベクトルを求めます。
Pが線分DB上にあるとき、線分DB上の点Pの位置ベクトル(直線のベクトル方程式を参照)は、として、
 ・・・@
Pが線分DA上にあるとき、線分DA上の点Pの位置ベクトルは、として、
 ・・・A
Pが線分AB上にあるとき、線分AB上の点Pの位置ベクトルは、として、
 ・・・B
三角形DABx軸に垂直な平面で切るときに、三角形DABの各辺との交点を求めます。
@において、とすると、,これを@に代入して、辺
DBと平面の交点はHです。ここで、より,即ちです。
Aにおいて、とすると、,これを@に代入して、辺
DAと平面の交点はIです。ここで、より,即ちです。
Bにおいて、とすると、,これを@に代入して、辺
DAと平面の交点はJです。ここで、,即ちです。
平面は、のとき辺
DBHで交わり、のとき辺DAIで交わり、のとき辺ABJで交わりますが、これで、HJ,あるいはIJのうち、回転軸から遠い方の点を回転させた円の面積から近い方の点を回転させた円の面積を引いてkで積分、とやってしまうのは誤りです。
線分
HJ,線分IJ上の点で、回転軸から最も近い点が、線分の端点になるとは限らないからです(回転体の体積を参照)
そこで、のとき、のとき、に分けて、線分
HJ上の点、線分IJ上の点で、回転軸から最も近い点、最も遠い点を考えることになります。
上記より、
HIJの座標は、HIJなので、のとき、
 ・・・C
のとき、
 ・・・D

三角形ABDを回転させてできる立体を平面で切ったときの断面積をとします。
のとき、平面と三角形ABDとの共有点は点Bだけです。点Bを回転させたときの断面積と考えます。
のとき、平面と三角形ABDとの共有点は点Aだけです。点Aを回転させたときの断面積と考えます。
のとき、線分HJ上の点Pの位置ベクトルは、として、Cより、
平面の回転軸上の点KPとの距離の2乗は(内積を参照)





右図より、のグラフを描いてみると、
(a) のとき、t 2次関数の軸の位置はとなり、2次関数は、(PHに来る)のとき最小で(PJに来る)のとき最大になります(2次関数の最大最小を参照)


 ・・・E
(b) のとき、2次関数の軸の位置は、となり、2次関数は、のときに最小値をとり、(PJに来る)のとき最大になります。

 ・・・F
のとき、線分IJ上の点Pの位置ベクトルは、として、Dより、
平面の回転軸上の点KPとの距離の2乗は、



2次関数は、のとき最小値をとり、のとき(Pが端点IJに来る)最大値をとります。
 ・・・G

E,F,G,より、求める体積Vは、
 (不定積分を参照)



......[]

別解.上記では、正直に回転軸から、線分HJ上の点との距離の最大最小、線分IJ上の点との距離の最大最小を考えましたが、平面上で考えることもできます。上記より、
のとき、平面上で、HJです(右図参照)。直線HJ(直線の方程式を参照)
つまり、,回転軸上の点Kを通る垂線との交点Qは、として、HJ上の点のz座標kについて、 (Hz座標がkJz座標が0)なので、この交点が、線分HJ上に位置するためには、,つまり、
と合わせて、,このときには、
Kからの距離の最小値は,最大値はです。
のときには、先の交点
Qは、線分HJには来ないので、Kからの距離は、最小値がKH,最大値KJです。
のとき、平面上で、IJです。(右図参照)このときは、Kから線分IJに垂線KQを必ず下すことができて、Kからの距離の最小値は,最大値KJです。



【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。

  東大理系数学TOP  数学TOP  TOPページに戻る

【広告】ここから広告です。ご覧の皆さまのご支援ご理解を賜りたく、よろしくお願いいたします。
【広告】広告はここまでです。

各問題の著作権は
出題大学に属します。

©2005-2024
(有)りるらる
苦学楽学塾 随時入会受付中!
理系大学受験ネット塾苦学楽学塾
(ご案内はこちら)ご入会は、
まず、こちらまでメール
お送りください。